
The ExaML v3.0.X Manual

July 17 2017

Alexandros Stamatakis
Heidelberg Institute for Theoretical Studies

Introduction
Compiling
Usage Example & Command Line Options
Production Level Analyses
Running ExaML on the Intel MIC
Frequently Asked Questions

Introduction

Exascale Maximum Likelihood (ExaML) is a code for phylogenetic inference using
MPI. This code implements the popular RAxML search algorithm for maximum
likelihood based inference of phylogenetic trees.
ExaML is a strapped-down light-weight version of RAxML for phylogenetic
inference on huge datasets. It can only execute some very basic functions and is
intended for computer-savvy users that can write little perl-scripts and have
experience using queue submission scripts for clusters. ExaML only implements
the CAT and GAMMA models of rate heterogeneity for binary, DNA, and protein
data.
ExaML uses a radically new MPI parallelization approach that yields improved
parallel efficiency, in particular on partitioned multi-gene or whole-genome
datasets. It also implements a new load balancing algorithm that yields better
parallel efficiency.
It is up to 4 times faster than its predecessor RAxML-Light [1] and scales to a
larger number of processors.

Please cite the following paper when using ExaML:

A. Kozlov, A.J. Aberer, A. Stamatakis: “ExaML Version 3: A Tool for
Phylogenomic Analyses on Supercomputer”. In Bioinformatics (2015)
doi: 10.1093/bioinformatics/btv184

Advance on-line publication link:
http://bioinformatics.oxfordjournals.org/content/early/2015/03/28/bioinforma
tics.btv184.abstract?keytype=ref&ijkey=xZdxpOZMjzxWlv9

Similar to RaxML-Light whose development has been discontinued, ExaML also
implements checkpointing, SSE3, AVX vectorization and memory saving

http://bioinformatics.oxfordjournals.org/content/early/2015/03/28/bioinformatics.btv184.abstract?keytype=ref&ijkey=xZdxpOZMjzxWlv9
http://bioinformatics.oxfordjournals.org/content/early/2015/03/28/bioinformatics.btv184.abstract?keytype=ref&ijkey=xZdxpOZMjzxWlv9

techniques. The usage philosophy is similar to RAxML, albeit it only implements a
subset of RAxML features. It will be very helpful to read the RAxML manual, before
getting started with ExaML.

Support is provided via the RAxML google group:
https://groups.google.com/forum/?hl=de&fromgroups#!forum/raxml.
Please refrain from sending emails with questions directly to the authors of the
code! If you ask your questions on the google group you can first search it for
similar questions and then post your question. The reply will then be visible and
searchable for everybody and make it much easier for us to provide good and
timely support.

ExaML has been used, for instance, in the following two science papers:

http://www.sciencemag.org/content/346/6215/1320.abstract
http://www.sciencemag.org/content/346/6210/763

[1] A. Stamatakis, A.J. Aberer, C. Goll, S.A. Smith, S.A. Berger, F. Izquierdo-
Carrasco: "RAxML-Light: A Tool for computing TeraByte Phylogenies",
Bioinformatics http://bioinformatics.oxfordjournals.org/content/28/15/2064.short

Compiling the code

There is actually a suite of tools required to accomplish the task of inferring large
phylogenies.

When you download the code there will be four relevant directories:

examl
manual
parser
testData

Let's first compile the parse-examl by typing:

cd parser
make ­f Makefile.SSE3.gcc

This should produce an executable called parse­examl

Next, let's compile ExaML. Note that, you will require a MPI compiler, usually
called mpicc to accomplish this task (if you don't know what this is ask your local
geeks; the OpenMPI MPI implementation is usually relatively easy to install:
http://www.open-mpi.de/).

Type:

cd ../examl/

http://www.open-mpi.de/
http://bioinformatics.oxfordjournals.org/content/28/15/2064.short
http://www.sciencemag.org/content/346/6210/763
http://www.sciencemag.org/content/346/6215/1320.abstract
https://groups.google.com/forum/?hl=de&fromgroups#!forum/raxml

make ­f Makefile.SSE3.gcc

→ this will compile the SSE3 vectorized version of the code, the binary will be
called examl

If you have a recently purchased system you can also try to compile the AVX-ion
vectorized version of ExaML (for performance and further details please refer to
the on-line supplement of [1]). Whenever you can, please use the AVX version of
the code which is faster!

first remove the object files created when you compiled the SSE3 version of
examl:

rm *.o

then compile the AVX version by typing:

make ­f Makefile.AVX.gcc

this should produce a binary called: examl­AVX

We recently also implemented a hybrid MPI-OpenMP version of ExaML for x86
CPUs, that sometimes scales better when using a huge number of cores (see
Section “Production Level Analyses”), this can be compiled by using the
appropriate Makefiles. For instance, typing:

make ­f Makefile.OMP.AVX.gcc

will produce a binary called: examl­OMP­AVX

Usage Example & Command Line Options

I will walk you through a simple example of how to use the code on my laptop.

The Parser

Initially we will have to transform an alignment file in relaxed phylip format (as
used for RAxML) into a binary file format that can be read by ExaML. The main
reason for this is to allow ExaML to read this file faster and not waste any valuable
parallel computing time for this simple pre-processing task. This might seem to be
a bit complicated but saves a lot of CPU idle time when starting ExaML with a
huge number of cores. To better understand this you can have a look at the
Wikipedia site for Amdahl's law: http://en.wikipedia.org/wiki/Amdahl%27s_law

Help for the command line arguments of the parse­examl can be obtained by
typing:

http://en.wikipedia.org/wiki/Amdahl's_law

./parse­examl ­h

parse­examl
 ­s sequenceFileName
 ­n outputFileName
 ­m substitutionModel
 [­c]
 [­q]
 [­h]

­m Type of Data:

For DNA data use: DNA
 For AA data use: PROT

For Binary data use: BIN

­c disable site pattern compression

­q Specify the file name which contains the assignment of
models to alignment partitions for multiple models of
substitution. For the syntax of this file please
consult the RAxML manual.

­h Display this help message.

Now let's use the parse-examl to transform the test file into a binary file by typing:

./parse­examl ­s ../testData/49 ­m DNA ­n 49.unpartitioned

So we are transforming an unpartitioned phylip file with 49 DNA sequences into a
binary file. The parser directory will now contain a file called:

49.unpartitioned.binary

that can be read by ExaML.

The parser will also print the following useful output to screen:

gappyness: 0.074048
Pattern compression: ON

Alignment has 51 completely undetermined sites that will be
automatically removed from the binary alignment file

Your alignment has 628 unique patterns

Under CAT the memory required by ExaML for storing CLVs and tip
vectors will be

1015476 bytes
991 kiloBytes
0 MegaBytes
0 GigaBytes

Under GAMMA the memory required by ExaML for storing CLVs and
tip vectors will be
3969588 bytes
3876 kiloBytes
3 MegaBytes
0 GigaBytes

Please note that, these are just the memory requirements for
doing likelihood calculations!
To be on the safe side, we recommend that you execute ExaML on a
system with twice that memory.

Binary and compressed alignment file written to file
49.unpartitioned.binary

Parsing completed, exiting now ...

So let's see why this is useful information. First of all, the proportion of
gaps/missing data is interesting (it's 7.4% here), since this can be used as a guide
to determine if it makes sense to use the ­S memory saving option for gappy
alignments in ExaML. Roughly speaking, using that option in ExaML makes sense if
the gappyness is above 30%, i.e., above 0.3.
Next, the parser tells you that there are 51 alignment sites in the alignment that
consist of fully undetermined characters (N, ?, ­, etc.) and contain no signal.
This is a bot worrisome, since something may have gone wrong during alignment
assembly. Nonetheless, the parser will automatically remove these sites.
Next, the parser tells you how many distinct site patterns the alignment has which
is important for figuring out the computational requirements in terms of memory
usage.
Finally, and this is very useful, the parser tells you how much memory will be
required by ExaML to store the conditional likelihood arrays for this alignment
under the per site rate (PSR) and GAMMA models of rate heterogeneity. These
numbers allow you to determine how much memory the system you are going to
use for tree inference with ExaML needs to have. Here it tells us that it requires
3MB, to be on the safe side let's multiply this with 2, hence we need a system
with at least 6MB RAM. This can easily be executed on my laptop :-)

Note that, if you have an alignment that requires, for instance, 500GB of RAM it
can run on 50 cores with 1GB RAM per core, since ExaML distributes the memory
requirements evenly over all cores.

If we want to partition the data, we will have to pass a standard RAxML partition
file (see RAxML manual for a very detailed explanation) to parse­examl, e.g:

./parse­examl ­s ../testData/49 ­q ../testData/49.model ­m DNA
­n 49.partitioned

This will generate a file called

49.partitioned.binary

WARNING: Note that, every time you change the partition scheme, you will have
to re-generate a binary alignment file that encodes the new partitioning scheme!
A common question is how one can tell the parser to use a specific protein
substitution model, e.g., WAGF (WAG with empirical base frequencies) or to
optimize the base frequencies for DNA data (DNAX) via a Maximum Likelihood
estimate when there is only one single partition. In this case, you will have to
specify a one line partition file, spanning the entire aligment. Assume your
alignment has 1000 sites, then, the respective line in the protein partition file
would look like this:

WAGF, p1=1­1000

and for DNA data with a ML estimate of base frequencies:

DNAX, p1=1­1000

Generating Starting Trees

Now, we are almost ready to start an ExaML run. However, you also need to
provide a starting tree to ExaML by using, for instance the parsimonator (see
http://sco.h-its.org/exelixis/web/software/parsimonator/index.html) code or
standard RAxML.

By using the following command you can generate a randomized stepwise
addition order parsimony tree with RAxML:

raxmlHPC­AVX ­y ­m GTRCAT ­p 12345 ­s ../testData/49 ­n
StartingTree

Note that, if possible you should use the AVX version of RAxML since the
parsimony calculations have been optimized with SSE3 and AVX vector intrinsics
and the AVX version is the fastest. In addition, when generating several parsimony
trees make sure to pass different random seeds via ­p, otherwise you will always
obtain the same tree!

To generate a complete random starting tree type:

raxmlHPC­AVX ­y ­d ­m GTRCAT ­p 12345 ­s ../testData/49 ­n
RandomStartingTree

http://sco.h-its.org/exelixis/web/software/parsimonator/index.html

As above, for generating several random starting trees make sure to pass different
random seeds via ­p, otherwise you will always obtain the same tree!

ExaML

What can ExaML compute?

As already mentioned, ExaML is a strapped-down version of the standard RAxML
distribution. It is meant to be used in combination with standard RAxML or the
parsimonator (also available at www.exelixis-lab.org/software.html) program for
analyzing very large trees under parsimony. As such, the only three things ExaML
can do is to infer trees under Maximum Likelihood, given a pre-computed (e.g.,
with standard RAxML or the parsimonator) starting tree, to evaluate a set of
given, fixed trees under Maximum Likelihood, or to sample quartets in a similar
way as RAxML.
It can not do bootstraps, searches on multiple starting trees, or compute starting
trees on its own. This requires some scripting. The rationale is that all these pre-
computation steps can be done on a smaller server and will therefore not
consume valuable CPU time on the large clusters and supercomputers that ExaML
has been designed for.

But let's get started with ExaML now. We have included a starting tree in the
testData directory, such that we can now run ExaML.

For this we will have to change into the ExaML directory by typing:

cd ../examl

On-line help regarding ExaML command line options can be obtained by typing:

./examl ­h

which will yield the following output:

examl|examl­AVX
­s binarySequenceFileName
­n outputFileNames

 ­m rateHeterogeneityModel
­t userStartingTree|­R binaryCheckpointFile|­g constraintTree
­p randomNumberSeed
[­a]
[­B numberOfMLtreesToSave]
[­c numberOfCategories]
[­D]
[­e likelihoodEpsilon]
[­f d|e|E|o|q]
[­h]
[­i initialRearrangementSetting]
[­I quartetCheckpointInterval]

http://www.exelixis-lab.org/software.html

[­M]
[­r randomQuartetNumber]
[­S]
[­v]
[­w outputDirectory]
[­Y quartetGroupingFileName]
[­­auto­prot=ml|bic|aic|aicc]

­a use the median for the discrete approximation of the GAMMA
model of rate heterogeneity

DEFAULT: OFF

Comment: typically using the median instead of the average yields
slightly better likelihood values, without increasing the number of
parameters. Hence, enabling this option is recommended.

­B specify the number of best ML trees to save and print to
file

Comment: This can be used to not only save the final best-scoring ML
tree, but also trees that were encountered during the tree search.

­c Specify number of distinct rate catgories for ExaML when
modelOfEvolution is set to GTRPSR .
Individual per­site rates are categorized into
numberOfCategories rate categories to accelerate
computations.

DEFAULT: 25

Comment: It is probably best to leave this unchanged.
A common user mistake is to think that this can also be used to set
the number of discrete rate categories the GAMMA model of rate
heterogeneity uses. This is wrong! Under GAMMA ExaML will always
use 4 discrete rate categories, this setting can not be changed!

 ­D ML search convergence criterion. This will break off ML
searches if the relative Robinson­Foulds distance between
the trees obtained from two consecutive lazy SPR cycles is
smaller or equal to 1%. Usage recommended for very large
datasets in terms of taxa.

 On trees with more than 500 taxa this will yield execution
time improvements of approximately 50% while yielding only
slightly worse trees.

 DEFAULT: OFF

Comment: For performance details of this option, please see the
following book chapter: A. Stamatakis: "Phylogenetic Search
Algorithms for Maximum Likelihood". In M. Elloumi, A.Y. Zomaya,
editors. Algorithms in Computational Biology: techniques, Approaches
and Applications, 547-577, John Wiley and Sons, 2011.
An example is outlined in the log likelihood score over execution time
plot below for a single-gene dataset with 34,584 taxa. The ­D option
will help you to spare the time the program spends in the gray-shaded
convergence plateau.

­e set model optimization precision in log likelihood units
for final optimization of model parameters

 DEFAULT: 0.1

Comment: Analogous to the correspondig standard RAxML option.

­f select algorithm:

"­f d": new rapid hill­climbing

DEFAULT: ON

"­f e": compute the likelihood of a bunch of trees passed
via ­t . This option will do a quick and dirty optimization
without re­optimizng the model parameters for each tree.

"­f E": compute the likelihood of a bunch of trees passed
via ­t this option will do a thorough optimization that re­
optimizes the model parameters for each tree.

Comment: Note that, checkpointing is also implemented for the ­f e
and ­f E options!

 "­f o": old and slower rapid hill­climbing without
heuristic cutoff

 DEFAULT for "­f": new rapid hill climbing

Comment: For very broad phylogenomic datasets we recommend
that users also test the performance of the ­f o option. The
performance differences between -f o and -f d are described in the
following paper: A. Stamatakis, F. Blagojevic, C.D. Antonopoulos, D.S.
Nikolopoulos: "Exploring new Search Algorithms and Hardware for
Phylogenetics: RAxML meets the IBM Cell". In Journal of VLSI Signal
Processing Systems, 48(3):271-286, 2007.

"­f q": fast quartet calculator

Comment: Analogous to the respective RAxML option for sampling
quartets. If neither ­r nor ­Y is specified, this will sample all possible
quartets from a given alignment and tree. The tree is only required to
estimate ML model parameters for quartet calculations on it. Unlike
RAxML, quartet calculations in ExaML are not parallelized over
quartets, but the likelihood calculations for each quartet are
conducted in parallel. As a consequence this will only scale on broad
phylogenomic alignments, just like ExaML tree searches as well. An
advantage is that model parameter optimization and quartet
evaluation can be conducted in one single run. Checkpointing is also
implemented.

­g Pass a multi­furcating constraint tree to ExaML. The tree
needs to contain all taxa of the alignment!
When using this option you also need to specify a random
number seed via "­p" !

Comment: Mostly analogous to the corresponding standard RAxML
option. However, in contrast to RAxML, the constraint tree needs to
contain all taxa of the alignment, that is, ExaML can not add taxa that
are not contained in the constraint tree. The random number seed is
required because multi-furcations will initially be resolved randomly
and then refined via a Maximum Likelihood search.

­h Display this help message.

­i Initial rearrangement setting for the subsequent
application of topological changes phase

Comment: Analogous to the corresponding standard RAxML option.

­I Set after how many quartet evaluations a new checkpoint
will be printed.

 DEFAULT: 1000

Comment: Writing checkpoints too frequently can impact
performance. However, performance would also decrease if I had
implemented a given time interval for writing checkpoints since this
would require frequent communication between all process. You may
want to tune this such that a checkpoint is written every 1-2 hours or
so.

­m Model of rate heterogeneity

select "­m PSR" for the per­site rate category model (this
used to be called CAT in RAxML)

select "­m GAMMA" for the gamma model of rate heterogeneity
with 4 discrete rates

Comment: The selected model of rate heterogeneity will be applied
to all partitions; one can not assign PSR to some partitions and
GAMMA to some others. Also note that, on large phylogenomic
datasets with an insuficiient number of taxa (below roughly 100) PSR
may yield suboptimal results. We therefore recommend to always also
do some initial tree searches under GAMMA.

­M Switch on estimation of individual per­partition branch
lengths. Only has effect when used in combination with "­q"

 Branch lengths for individual partitions will be printed to
separate files .
A weighted average of the branch lengths is computed by
using the respective partition lengths

DEFAULT: OFF

Comment: Analogous to the corresponding standard RAxML option.

­n Specifies the name of the output file.

Comment: Analogous to the corresponding standard RAxML option.

­p Specify a random number seed, required in conjunction with
the "­g" option for constraint trees

Comment: Analogous to the corresponding standard RAxML option.

­r Pass the number of quartets to randomly sub­sample from
the possible number of quartets for the given taxon set.

 Only works in combination with ­f q !

Comment: Analogous to the corresponding RAxML option. Note that
we are essentially drawing quartets at random with replacement here.

­R read in a binary checkpoint file called
ExaML_binaryCheckpoint.RUN_ID_number

Comment: This can be used to continue a tree search that was
interrupted, for instance, if ExaML runs longer than the CPU time limit
(typically 24 or 48 hours) on the cluster you are using. Note that, if
you restart with ­R you can omit specifying ­t because the starting
tree is not required anymore and the intermediate tree has been
stored in the checkpoint file.
Note that, checkpoints generated by previous ExaML versions may be
be incompatible with the current version. ExaML will check the version
number that is stored in the checkpoint and exit with an error in such
cases.
Also, make sure that a run starting from a checkpoint uses the same
command line arguments as the run that produced the checkpoint. If
the command line arguments don't match, ExaML will also exit with an
error.

­s Specify the name of the BINARY alignment data file
generated by the parser component

­S turn on memory saving option for gappy multi­gene
alignments. For large and gappy datasets specify ­S to save
memory .
This will produce slightly different likelihood values, may
be a bit slower but can reduce memory consumption
from 70GB to 19GB on very large and gappy datasets

Comment: Equivalent to the standard RAxML ­U option.
Corresponding performance results are described in the following
paper http://www.biomedcentral.com/1471-2105/12/470

­t Specify a user starting tree file name in Newick format

Comment: To avoid tree formatting issues we highly recommend that
you generate starting trees either with parsimonator or standard
RAxML. ExaML is guaranteed to properly parse these trees. If you are
re-starting ExaML from a checkpoint file, you don't need to specify
the starting tree once again.

http://www.biomedcentral.com/1471-2105/12/470

­v Display version information

­w FULL (!) path to the directory into which ExaML shall write
its output files

DEFAULT: current directory

Comment: Analogous to the corresponding standard RAxML option.

­Y Pass a quartet grouping file name defining four groups from
which to draw quartets

 The file input format must contain 4 groups in the
following form:

 (Chicken, Human, Loach), (Cow, Carp), (Mouse, Rat, Seal), (Whale, Frog);

 Only works in combination with ­f q !

Comment: Analogous to the corresponding standard RAxML option.
The required file format is exactly the same!

­­auto­prot=ml|bic|aic|aicc When using automatic protein model
selection you can chose the criterion for selecting these
models.
ExaML will test all available prot subst. models except for
LG4M, LG4X and GTR­based models, with and without empirical
base frequencies.

 You can chose between ML score based selection and the BIC,
AIC, and AICc criteria.

 DEFAULT: ml

Comment: Analogous to the corresponding standard RAxML option.

Now, given that we know all command line options of examl and that we have
used parse­examl and RAxML or parsimonator to generate binary alignment files
and starting trees, we are ready to start an ExaML run:

To execute a simple run using two processors we type:

mpirun.openmpi ­np 2 ./examl­AVX ­t ../testData/49.tree ­m GAMMA
­s ../parser/49.unpartitioned.binary ­n T1

This run will produce the following three plain-text output files:

ExaML_modelFile.T1 contains the model parameters (alpha, GTR rates,
base frequencies, tree length) for each partition of

the final tree
ExaML_result.T1 contains the ML tree in Newick format
ExaML_log.T1 contains a log of the log likelihoods encountered for

different trees during the tree search
ExaML_info.T1 contains execution information, similar to the

RAxML_info file

Then, the run also produces a set of binary checkpoint files numbered like this:

ExaML_binaryCheckpoint.T1_0
ExaML_binaryCheckpoint.T1_1
…
ExaML_binaryCheckpoint.T1_13

The higher the number at the end, the later the checkpoint was written! Thus, if
your ExaML run was interrupted for some reason, you have too look for the
checkpoint file with the highest number and re-start from there. Assume, that the
latest checkpoint written, was ExaML_binaryCheckpoint.T1_5 you can re-start
ExaML from this checkpoint as follows:

mpirun.openmpi ­np 2 ./examl­AVX
­s ../parser/49.unpartitioned.binary
­R ExaML_binaryCheckpoint.T1_5 ­m GAMMA ­n T1_RESTART

Note that, here you do not need to specify the starting tree via ­t again,
specifying the checkpoint file name via ­R suffices.

Now, for a tree inference on a partitioned dataset we type:

mpirun.openmpi ­np 2 ./examl­AVX ­t ../testData/49.tree
­m GAMMA ­s ../parser/49.partitioned.binary ­n T2

This will produce the same output files as above.

For better performance do not forget to experiment with the ­S option if your
dataset has a large fraction of missing data! The fraction of missing data is
indicated by the parser component.

Now, assume that you have conducted, for instance, several ML searches under
the Per site model of rate heterogeneity (­m PSR) and want to evaluate these
trees now under the gamma model of rate heterogeneity.

You will first need to concatenate all ML trees you want to evaluate in a single file,
using, for instance the Linux cat commad:

cat ExaML_result.* > treeSet
Then you can invoke ExaML either as follows:

mpirun.openmpi ­np 2 ./examl­AVX
­s ../parser/49.unpartitioned.binary ­t treeSet ­f e
­m GAMMA ­n T3

This will produce several output files:

ExaML_TreeFile.T3

This file contains the evaluated trees with branch lengths in the same order as the
input tree file treeSet.

Then, assuming that the input tree set contained two trees, ExaML will produce
two additional files:

ExaML_modelFile.T3.0
ExaML_modelFile.T3.1

These files contain information about the estimated model parameters (alpha,
GTR rates, tree length, base frequencies) for each partition of the dataset. A
separate file is generated for each input tree.

Alternatively, you can invoke ExaML as follows to evaluate trees:

mpirun.openmpi ­np 2 ./examl­AVX
­s ../parser/49.unpartitioned.binary ­t treeSet ­f E
­m GAMMA ­n T4

The only difference between the ­f e and ­f E options is that with ­f E the
model parameters for each tree will be estimated completely from scratch each
time, whereas under ­f e they are just optimized on the first tree in the tree set.
Then, ­f e will, for all remaining trees only optimize their branch lengths. This is
a trade-off between speed and accuracy, since ­f E will run much longer than
­f e.

Production Level Analyses

How many cores shall I use?

This generally depends on the type of data and model of rate heterogeneity you
deploy as well as on the hardware you are using. As a rough guide, we propose
the following.

DNA under GAMMA:Chose the number of cores such that each core will work on
about 3,000-4,000 alignment patterns. Keep in mind that the number of distinct
alignment patterns that is usually smaller than the number of alignment sites is
reported to you by the parser component!

Protein data under GAMMA: Chose the number of cores such that each core will

work on about 1,000 alignment patterns.

For analyses under CAT each core should work on around 12,000-16,000 patterns
for DNA and 4,000 patterns for protein data.

When shall I use the hybrid MPI-OpenMP version on x86 systems?

In general you should use the hybrid code when using a huge number of cores,
since it will provide improved parallel efficiency. We have included two parallel
efficiency plots below for a dataset with 1 million DNA patterns (Plot 1.) and 4
million amino acid patterns (Plot 2.).

It becomes pretty clear from these plots, that there is a clear cutoff point where
the hybrid MPI-OpenMP version (red line) is more efficient than the pure MPI
version (blue line). Also note that, for protein data the hybrid version is also
slightly faster when only using 4 nodes.

Finally note that, the memory saving option (­S) is not available for the hybrid
MPI-OpenMP version of ExaML.

Plot 1. Parallel efficiency on the SuperMuc supercomputer for 1 million DNA
patterns over the number of nodes used (each node has 16 cores).

1 4 8 16 32 64 128
0

20

40

60

80

100

120

140

DNA, 1M, MPI vs. OpenMP

MPI only MPI/OpenMP

nodes

e
ffi

ci
e

n
cy

, %

Plot 2. Parallel efficiency on the SuperMuc supercomputer for 4 million amino acid
patterns over the number of nodes used (each node has 16 cores).

How do I conduct a full production-level analysis?

Here, we will quickly summarize our experiences and insights in running ExaML on
the two large phylogenomic datasets (birds & insects) that were both published in
Science in 2014.

Generally, broad phylogenomic datasets behave a bit differently than normal
datasets in terms of the tree search, since there is just so much data. For the birds
we had around 50 entire genomes, while for the insects we had about 140
transcriptomes.

Caution is advised with starting trees. Because there is so much data, using
randomized stepwise addition, to generate a parsimony tree can frequently yield
identical starting trees, despite different random addition orders.

Thus, once you have generated a set of 20-40 parsimony starting trees you should
first check how diverse they really are. This can be done with the standard RAxML
option ­f r that can compute the Robinson-Foulds distances between all trees in
a tree set and will also tell you how many distinct tree topologies are in that tree
set.

Irrespective of this, you should also always generate 20-40 completely random
starting trees (for instance, using standard RAxML), to make sure that the search
algorithm is not biased in any way by the starting trees.

Before, running the complete set of ML searches we also advise that you should

4 8 16 32 64 128 256 512
0

20

40

60

80

100

120

AA, 4M, MPI vs. OpenMP

MPI only MPI/OpenMP

nodes

e
ffi

ci
e

n
cy

, %

check the behavior of the GAMMA and PSR models of rate heterogeneity. This can
be done by running some preliminary analyses. We usually took a set of 10
starting trees (5 random trees and 5 parsimony starting trees) and conducted a
total of 20 ML searches, 10 under PSR and 10 under GAMMA.

In a second step, we then calculated the scores of all 20 inferred trees under
GAMMA with ExaML using ­f e or ­f E. This allows to determine if GAMMA- or
PSR-based inferences yield the best results. Note that, caution is advised when
using PSR on datasets with roughly less than 100 taxa, because in such cases
there might not be enough data available to reliably infer the per-site rates.

With respect to bootstraps, we used the a posteriori Bootstopping criterion (see
http://online.liebertpub.com/doi/abs/10.1089/cmb.2009.0179) implemented in
standard RAxML to determine how many bootstrap replicates are sufficient.

This is done as follows: We use ExaML to compute an initial set of say 50
bootstrap trees. We then concatenate them into a single file and then use
standard RAxML with the ­I autoMRE option (for details, see RAxML manual) to
determine if the support values have stabilized. If they have not, we run another,
say, 50 BS replicates, concatenate all 100 BS trees into a single file and do an a
posteriori bootstop test again. We repeat this procedure until we have enough
replicates.

Note that, on such large phylogenomic datasets, due to the strong signal, doing
50 or 100 replicates is usually sufficient. Thus, in order not to waste valuable CPU
time we highly recommend to use bootstopping.

Running ExaML on the Intel MIC

Since version 3.x ExaML also offers (partial) support for running on Intel MIC/Intel
Xeon Phi-based clusters. In the following we will outline how to compile the code
and what the limitations are.

Compiling

Please first set your MPI/MIC environment (ask your sys-admin if unsure) and then
type:

make ­f Makefile.AVX.gcc
make ­f Makefile.MIC.icc clean
make ­f Makefile.MIC.icc

This will create two executables for both, the host (=CPU) and MIC. They are
called examl­AVX and examl­MIC, respectively.

http://online.liebertpub.com/doi/abs/10.1089/cmb.2009.0179

Running on the MIC

Initially, use parse­examl to generate a binary alignment file as described before.

You might want to allocate MPI ranks both, on host CPUs and MICs (hybrid mode)
or just on the MICs, depending on your configuration.

Here is an example command line for running ExaML in hybrid mode (16 CPU
cores + 2 MIC cards):

mpiexec ­host myhost­ib ­n 16 /scratch/examl­AVX ­n mictest
­s /scratch/mictest.binary ­t /scratch/start.tre
­m GAMMA ­w /scratch :

 ­host myhost­mic0 ­n 30 ­env OMP_NUM_THREADS 4
­env KMP_AFFINITY "granularity=fine,balanced"
/scratch/examl­MIC ­n mictest
­s /scratch/mictest.binary ­t /scratch/start.tre
­m GAMMA ­w /scratch :

 ­host myhost­mic1 ­n 30 ­env OMP_NUM_THREADS 4
­env KMP_AFFINITY "granularity=fine,balanced"
/scratch/examl­MIC ­n mictest

 ­s /scratch/mictest.binary ­t /scratch/start.tre
­m GAMMA ­w /scratch

Here, we use 1 MPI rank per core on the host CPUs. Also, on each MIC card, we
start 30 ranks with 4 OpenMP threads each. This generates 120 threads in total or
2 threads per MIC core. For better readability we show the commands for starting
ExaML on the CPUs in green, one the first MIC card in blue and on the second in
red.

Changing the ratio of CPU versus MIC ranks allows to fine-tune the optimal load
balance (and thus parallel efficiency) for the specific hardware configuration and
dataset at hand.

The KMP_AFFINITY environment variable is specific to OpenMP and is used for
mapping threads to processors. Please refer to the respective Intel documentation
web-pages for further details.

Limitations

The following ExaML options are supported on the MIC:
• DNA and AA data
• GAMMA model of rate heterogeneity
• multiple partitions
• all AA substitution matrices supported by ExaML, including LG4M & LG4X

The following ExaML options are currently not supported on the MIC:
• binary data

• PSR model of rate heterogeneity (it does not fit the architecture well, a
mapping would thus be inefficient and too complex)

• memory saving for gappy alignments (­S option)

Memory capacity:

Compared to traditional CPUs, MIC cards have significantly less memory available
per core. This can cause problems for memory-intensive ML computations. Thus,
you should plan your runs carefully (using the information generated by the
parser) and split your run over multiple cards, if needed.

Performance:

ExaML-MIC performs best on alignments with a large number of sites and few
taxa. The latter limitation is due to the limited on-card memory of the MICs (see
above). Therefore, you might need to use multiple cards if the number of taxa is
large.

For further details, please refer to:

http://www.hicomb.org/papers/HICOMB2014-04.pdf

and the on-line supplement of the ExaML version 3 Bioinformatics paper:

http://bioinformatics.oxfordjournals.org/content/suppl/2015/03/28/btv184.DC1/sup
plement.pdf

Frequently Asked Questions

Q: How can I do bootstraps with ExaML?
A: Here, you will once again have to use the standard RAxML version first and do
some scripting. Initially you should use standard RAxML to generate bootstrap
replicate files, by typing e.g.:

./raxmlHPC­SSE3 ­# 100 ­b 12345 ­f j ­m GTRCAT ­s 49 ­n REPS

This will generate 100 BS replicates as indicated in the terminal output:

Printing replicate 0 to /home/stamatak/Desktop/GIT/RAxML­LIGHT/dna.phy.BS0
Printing replicate 1 to /home/stamatak/Desktop/GIT/RAxML­LIGHT/dna.phy.BS1
Printing replicate 2 to /home/stamatak/Desktop/GIT/RAxML­LIGHT/dna.phy.BS2
Printing replicate 3 to /home/stamatak/Desktop/GIT/RAxML­LIGHT/dna.phy.BS3
......
Printing replicate 98 to /home/stamatak/Desktop/GIT/RAxML­LIGHT/dna.phy.BS98
Printing replicate 99 to /home/stamatak/Desktop/GIT/RAxML­LIGHT/dna.phy.BS99

Important: if you use a partitioned dataset, you will need to also pass
the partition file of the original alignment to the above RAxML command
via -q to generate correct BS replicate MSAs, but also, correct new
partition files, (works as of RAxML version 8.2.5). The command line and
output will look like this:

http://bioinformatics.oxfordjournals.org/content/suppl/2015/03/28/btv184.DC1/supplement.pdf
http://bioinformatics.oxfordjournals.org/content/suppl/2015/03/28/btv184.DC1/supplement.pdf
http://www.hicomb.org/papers/HICOMB2014-04.pdf

./raxmlHPC­AVX ­# 100 ­b 12345 ­f j ­m GTRCAT ­s 49 ­q part
­n REPS_2

This will produce the following output:

A partitioned model file with model assignments for bootstrap alignments
is printed to file /home/stamatak/Desktop/GIT/raxml­hpc/standard­RAxML/part.BS0
IMPORTANT: You MUST use this new model file and NOT the original one when running RAxML and ExaML on these bootstrapped alignments!

Printing replicate 0 to /home/stamatak/Desktop/GIT/raxml­hpc/standard­RAxML/49.BS0

A partitioned model file with model assignments for bootstrap alignments
is printed to file /home/stamatak/Desktop/GIT/raxml­hpc/standard­RAxML/part.BS1
IMPORTANT: You MUST use this new model file and NOT the original one when running RAxML and ExaML on these bootstrapped alignments!

Printing replicate 1 to /home/stamatak/Desktop/GIT/raxml­hpc/standard­RAxML/49.BS1

. . .

A partitioned model file with model assignments for bootstrap alignments
is printed to file /home/stamatak/Desktop/GIT/raxml­hpc/standard­RAxML/part.BS99
IMPORTANT: You MUST use this new model file and NOT the original one when running RAxML and ExaML on these bootstrapped alignments!

Printing replicate 99 to /home/stamatak/Desktop/GIT/raxml­hpc/standard­RAxML/49.BS99

Then, you would use standard RAxML again (and the corresponding partition file
for the BS replicate!) to compute parsimony starting trees for each replicate e.g.,
via a respective perl script:

#base name of bootstrap replicate file names
$bsname = "dna.phy.BS";

#parsimony random number seed range
$range = 1000000000;

lopp over 100 bootstrap replicates
for($i = 0; $i < 100; $i++)
 {

 # generate a random number seed for the randomized stepwise addition parsimony tree building process
 $random_number = int(rand($range));

 # build the command line string
 $command = "./raxmlHPC­AVX ­y ­s ".$bsname.$i." ­m GTRCAT ­n T".$i." ­p ".$random_number." \n";

 # execute the command
 system($command);
}

This will generate 100 parsimony starting trees called
RAxML_parsimonyTree.T0

 ...
RAxML_parsimonyTree.T99.

Note that, there is no PThreads support for parsimony calculations in RAxML,
hence you should use the sequential version.

You will also need to run the parser again for each BS replicate MSA including the
corresponding partition file for each BS replicate.

Once you have generated the starting trees and binary alignment files for each
replicate you can then launch ExaML 100 times to compute the 100 Bootstrap
trees.

Q: What is a large dataset that would be appropriate for ExaML?
A: Large datasets are either many-taxon datasets with more than 10,000 taxa and

a couple of genes (e.g., 10-20 genes) or datasets with a couple of hundred taxa
and 1000 genes or even full transcriptomes or genomes.

Q: Under which license is ExaML available?
A: It's available under GNU GPL version 3 or later.

Q: What are the largest trees that can/have be computed with ExaML?
A: In terms of #taxa a tree with almost 120,000 taxa and a couple of genes was
computed with the ExaML predecessor RAxML-Light. This can run nicely on a
single multi-core node with 48 cores and 128GB of memory under the PSR model.
In terms of broad phylogenomic datasets we have analyzed about 50 complete
genomes (bird paper in Science) and 140 transcriptomes (insect paper in
Science).

